Square numbers

A number is a perfect square if it is the result of multiplying an integer (n) by itself. (n × n or n2)

List of square numbers

Enter the largest value:

1 4 9 16 25 36 49 64 81 100
Last digit

The last digit of a square number must be 0, 1, 4, 6 or 9

Sum of odd numbers

n2 is the sum of the first n odd numbers.

1 2 5 10 17 26 37 50 65 82

1 = 1

4 3 6 11 18 27 38 51 66 83

4 = 1 + 3

9 8 7 12 19 28 39 52 67 84

9 = 1 + 3 + 5

16 15 14 13 20 29 40 53 68 85

16 = 1 + 3 + 5 + 7

25 24 23 22 21 30 41 54 69 86

25 = 1 + 3 + 5 + 7 + 9

36 35 34 33 32 31 42 55 70 87

36 = 1 + 3 + 5 + 7 + 9 + 11

49 48 47 46 45 44 43 56 71 88

49 = 1 + 3 + 5 + 7 + 9 + 11 + 13

64 63 62 61 60 59 58 57 72 89

64 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15

81 80 79 78 77 76 75 74 73 90

81 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17

100 99 98 97 96 95 94 93 92 91

100 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

List of Pythagorean triplets: a2 = b2 + c2

Enter the largest value of a:

52 = 32 + 42

102 = 62 + 82

132 = 52 + 122

152 = 92 + 122

172 = 82 + 152

202 = 122 + 162

252 = 152 + 202

252 = 72 + 242

262 = 102 + 242

292 = 202 + 212

302 = 182 + 242

342 = 162 + 302

352 = 212 + 282

372 = 122 + 352

392 = 152 + 362

402 = 242 + 322

412 = 92 + 402

452 = 272 + 362

502 = 302 + 402

502 = 142 + 482

512 = 242 + 452

522 = 202 + 482

532 = 282 + 452

552 = 332 + 442

582 = 402 + 422

602 = 362 + 482

612 = 112 + 602

652 = 392 + 522

652 = 332 + 562

652 = 252 + 602

652 = 162 + 632

682 = 322 + 602

702 = 422 + 562

732 = 482 + 552

742 = 242 + 702

752 = 452 + 602

752 = 212 + 722

782 = 302 + 722

802 = 482 + 642

822 = 182 + 802

852 = 512 + 682

852 = 402 + 752

852 = 362 + 772

852 = 132 + 842

872 = 602 + 632

892 = 392 + 802

902 = 542 + 722

912 = 352 + 842

952 = 572 + 762

972 = 652 + 722

Triplets where a is prime

52 = 32 + 42

132 = 52 + 122

172 = 82 + 152

292 = 202 + 212

372 = 122 + 352

412 = 92 + 402

532 = 282 + 452

612 = 112 + 602

732 = 482 + 552

892 = 392 + 802

972 = 652 + 722

Triplets with a = (n2+1)÷2, b = n and c = (n2-1)÷2

52 = 32 + 42

132 = 52 + 122

252 = 72 + 242

412 = 92 + 402

612 = 112 + 602

852 = 132 + 842

Triplets with a = n2+1, b = 2n and c = n2+1

102 = 62 + 82

172 = 82 + 152

262 = 102 + 242

372 = 122 + 352

502 = 142 + 482

652 = 162 + 632

822 = 182 + 802

No paired triplets or triplets with a GCF greater than 1

292 = 202 + 212

532 = 282 + 452

652 = 332 + 562

732 = 482 + 552

852 = 362 + 772

892 = 392 + 802

972 = 652 + 722

Lagrange's four-square theorem

Every positive integer can be represented as the sum of four squares

Enter a value:

Square number properties

A number is a perfect square if it is the result of multiplying an integer (n) by itself. (n × n or n2)

Difference of two squares

a2 - b2 = (a - b)(a + b)

Sum of the first n square numbers

n;

r2

Σ

r = 1

=

n(n+1)(2n+1)
6
Sum of the first n odd numbers is the nth number squared

n;

(2r - 1)

Σ

r = 1

=

n(n+1) - n = n2

The product of four consquetive positive integers is square

n(n+1)(n+2)(n+3) + 1 = (n2 + 3n + 1)2

1 × 2 × 3 × 4 + 1 = 52

2 × 3 × 4 × 5 + 1 = 112

3 × 4 × 5 × 6 + 1 = 192

4 × 5 × 6 × 7 + 1 = 292

5 × 6 × 7 × 8 + 1 = 412

6 × 7 × 8 × 9 + 1 = 552

7 × 8 × 9 × 10 + 1 = 712

8 × 9 × 10 × 11 + 1 = 892

9 × 10 × 11 × 12 + 1 = 1092